Projects/Lidl Balkonkraftwerk Hacking: verschil tussen versies

Uit Hackerspace Amersfoort
Naar navigatie springen Naar zoeken springen
kGeen bewerkingssamenvatting
 
(28 tussenliggende versies door dezelfde gebruiker niet weergegeven)
Regel 4: Regel 4:
|URL=https://www.lidl.nl/p/tronic-balkon-zonnepanelen-starterset-400-w/p100387536
|URL=https://www.lidl.nl/p/tronic-balkon-zonnepanelen-starterset-400-w/p100387536
|contact=Polyfloyd
|contact=Polyfloyd
|info=ESP32 hacking
|info=Lohnt sich
|status=Alpha
|status=Production
|Picture=Lidl-balkonkraftwerk.jpg
|Picture=Lidl-balkonkraftwerk.jpg
}}
}}
Regel 28: Regel 28:


== Getting In ==
== Getting In ==
[[Lidl-balkonkraftwerk-6.jpg|200px|thumb|left]]
[[File:Lidl-balkonkraftwerk-6.jpg|200px|thumb|Test clamps hooked up]]


The pad on the UART header farthest from the ESP is connected to a large copper plane. With a continuity test from a multimeter I was able to conclude that this is a ground plane. The two middle pins have thin traces leading to the ESP which means that these are the RX/TX lines. The last pad is probably VCC, I did not measure it.
The pad on the UART header farthest from the ESP is connected to a large copper plane. With a continuity test from a multimeter I was able to conclude that this is a ground plane. The two middle pins have thin traces leading to the ESP which means that these are the RX/TX lines. The last pad is probably VCC, I did not measure it.


The board is powered from the DC/solar side. The Lidl Tuya app reports the DC voltage when the sun is hitting the panels, which usually is around 26 volts in slightly overcast weather conditions. The EWAY specs state that the maximum input voltage for this device is 60 volts. Hooking up some probes to the neatly exposed cable connections to a lab power supply with 20V made the board power up.
The board is powered from the DC/solar side. The Lidl Tuya app reports the DC voltage when the sun is hitting the panels, which usually is around 26 volts in slightly overcast weather conditions. The EWAY specs state that the maximum input voltage for this device is 60 volts. Hooking up some probes to the neatly exposed cable connections to a lab power supply with 20V made the board power up.
[[File:Lidl-balkonkraftwerk-3-with-pads-marked.jpg|200px|thumb|UART pads marked]]
Connecting the UART to a USB-dongle gave ASCII output! Hurray! The baudrate is 115200, which is the default for ESP devices.
Holding the BURN button while power cycling triggers the ESP to enter its ROM flashing mode, with which I was able to make a dump of the whole 4M firmware.
== Reverse Engineering the ROM ==
Shoutout to Shiz from Revspace for helping me to get started with Ghidra! o7
I then plowed through the ROM for a few days. I had never done reverse engineering for binaries, so this was a first fun project to discover that. It's quite fun to do. Every function and variable that I identify gives a little dopamine hit. It's a flow-state zen which is similar to programming. I hit a few dead ends in the firmware until I figured out the best way to approach this:
* Find the ESP-IDF functions by searching for their log strings and printfs.
* Find out which of those IDF functions are doing some kind of IO
* Find out what kind of routines are making those function calls
It turned out that really the only kind of IO this device ever does is communicating over its UART1 peripheral (this is distinct from its debugging interface which is UART0).
The peripheral connected to UART1 is wired as GPIO6=TX, GPIO7=RX.
There is something connected to GPIO4 which according to the firmware dump seems to be a LED. However, there is no LED visible on the top side of the PCB. The only LED at all on this device is a status LED controlled by the MPTT which is multi-color.
== Protocol ==
A basic communication frame consists of a 1 byte header that is 0xFA, followed by the contents and is terminated by a 1 byte inverted XOR-sum checksum and 0xFB.
The communication is rather unreliable, validating the checksum is a must.
=== Retrieving hardware/software info ===
<pre>
>>> FA:01:06:00:F8:FB
                ^^ checksum
      ^^ ^^ cmd
<<< FA:01:06:0B:04:00:20:1E:17:DE:FB
                              ^^ checksum
                            ^^ software version
                        ^^ hardware version
                ^^ rated power * 100 Watt
</pre>
=== Reading sensor values ===
<pre>
>>> FA:10:01:00:EE:FB
                ^^ checksum
      ^^ ^^ command
<<< FA:10:14:12:09:F4:01:01:0B:52:04:29:01:84:01:D7:00:C2:00:00:00:00:00:F1:FB
                                                                        ^^ checksum
                                                      ^^ ^^ ^^ ^^ energy produced since power-up, in watt-hours
                                                ^^ ^^ temperature * 10
                                          ^^ ^^ dc current * 100,
                                    ^^ ^^ dc voltage * 10
                              ^^ ^^ dc power * 10
                            ^^ operational status (0 = off, 8 = starting, 11 = active)
                  ^^ ^^ ac frequency * 10
            ^^ ^^ ac voltage * 10
</pre>
== Esphome ==
[[File:Lidl-Balkonkraftwerk-HASS-Sensors.png|200px|thumb|Stats shown in Home Assistant]]
The most up-to-date config that I use [https://git.polyfloyd.net/polyfloyd/esphome-config/src/branch/main/lidl-balkonkraftwerk.yaml can be found here]
<pre>
esphome:
  name: lidl-balkonkraftwerk
  friendly_name: Lidl Balkonkraftwerk
  platformio_options:
    board_build.flash_mode: dio
esp32:
  variant: esp32c3
  board: esp32-c3-devkitc-02
  framework:
    type: esp-idf
logger:
  hardware_uart: UART0
wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password
  ap:
web_server:
captive_portal:
ota:
  platform: esphome
  password: !secret ota_password
mqtt:
  broker: mqtt.local
  discovery: false
api:
uart:
  - id: uart_microinv
    rx_pin: 7
    tx_pin: 6
    baud_rate: 115200
    parity: none
    data_bits: 8
    stop_bits: 1
    debug:
      direction: BOTH
text_sensor:
  - platform: template
    name: "Firmware Version"
    id: microinv_sfv
    icon: mdi:alpha-v
  - platform: template
    name: "Hardware Version"
    id: microinv_hdv
    icon: mdi:alpha-v
  - platform: template
    name: "Status"
    id: microinv_status
    icon: mdi:cog
sensor:
  - platform: template
    id: microinv_cmd_0x0106
    update_interval: 60s
    lambda: |-
      const char *TAG = "microinv_cmd_0x0106";
      auto uart = id(uart_microinv);
      uint8_t discard;
      while (uart->available()) uart->read_byte(&discard);
      const uint8_t buf[] = {0xfa, 0x01, 0x06, 0x00, 0xf8, 0xfb};
      uart->write_array(buf, sizeof(buf));
      uart->flush();
      uint8_t recv[11] = {0};
      size_t nread = uart->read_array(recv, sizeof(recv));
      if (memcmp(recv, "\xfa\x01\x06", 3)) {
        ESP_LOGW(TAG, "response header invalid");
        return {};
      }
      uint8_t chk = 0;
      for (int i = 1; i < sizeof(recv)-2; i++) {
        chk = chk ^ recv[i];
      }
      chk = ~chk;
      if (chk != recv[sizeof(recv)-2]) {
        ESP_LOGW(TAG, "invalid checksum");
        return {};
      }
      id(microinv_sfv_rating).publish_state(recv[4] * 100);
      char ss[0xff] = {0};
      int sfv = recv[8];
      snprintf(ss, sizeof(ss), "%d.%d.%d", sfv / 100 + 1, (sfv / 10) % 10, sfv % 10);
      id(microinv_sfv).publish_state(std::string(ss));
      int hdv = recv[7];
      snprintf(ss, sizeof(ss), "%d.%d.%d", hdv / 100 + 1, (hdv / 10) % 10, hdv % 10);
      id(microinv_hdv).publish_state(std::string(ss));
      return {};
  - platform: template
    id: microinv_cmd_0x1001
    update_interval: 5s
    lambda: |-
      const char *TAG = "microinv_cmd_0x1001";
      auto uart = id(uart_microinv);
      uint8_t discard;
      while (uart->available()) uart->read_byte(&discard);
      const uint8_t buf[] = {0xfa, 0x10, 0x01, 0x00, 0xee, 0xfb};
      uart->write_array(buf, sizeof(buf));
      uart->flush();
      uint8_t recv[25] = {0};
      size_t nread = uart->read_array(recv, sizeof(recv));
      if (memcmp(recv, "\xfa\x10", 2)) {
        ESP_LOGW(TAG, "response header invalid");
        return {};
      }
      uint8_t chk = 0;
      for (int i = 1; i < sizeof(recv)-2; i++) {
        chk = chk ^ recv[i];
      }
      chk = ~chk;
      if (chk != recv[sizeof(recv)-2]) {
        ESP_LOGW(TAG, "invalid checksum");
        return {};
      }
      // recv[2] is unused
      float ac_voltage  = (float)(recv[4] << 8 | recv[3]) / 10.0;
      float ac_frequency = (float)(recv[6] << 8 | recv[5]) / 10.0;
      // recv[7] is always 1 and in the original fw some kind of length indicator of following data. The number of DC inputs?
      uint8_t status = recv[8];
      float dc_power    = (float)(recv[10] << 8 | recv[9])  / 10.0;
      float dc_voltage  = (float)(recv[12] << 8 | recv[11]) / 10.0;
      float dc_current  = (float)(recv[14] << 8 | recv[13]) / 100.0;
      float temperature = (float)(recv[16] << 8 | recv[15]) / 10.0;
      int energy = recv[20] << 24 | recv[19] << 16 | recv[18] << 8 | recv[17];
      // recv[21] and recv[22]: online or error status codes?
      id(microinv_ac_voltage).publish_state(ac_voltage);
      id(microinv_ac_frequency).publish_state(ac_frequency);
      id(microinv_dc_power).publish_state(dc_power);
      id(microinv_dc_voltage).publish_state(dc_voltage);
      id(microinv_dc_current).publish_state(dc_current);
      id(microinv_temperature).publish_state(temperature);
      id(microinv_energy).publish_state(energy);
      char status_unk[16] = {0};
      snprintf(status_unk, sizeof(status_unk), "0x%02x", status);
      id(microinv_status).publish_state(
        status == 0x00 ? "Standby" :
        status == 0x08 ? "Testing" :
        status == 0x0b ? "Active"  :
        status_unk);
      return {};
  - platform: uptime
    name: Uptime
  - platform: template
    name: "Rated Capacity"
    id: microinv_sfv_rating
    device_class: power
    unit_of_measurement: W
  - platform: template
    name: "AC Voltage"
    id: microinv_ac_voltage
    state_class: "measurement"
    device_class: voltage
    unit_of_measurement: V
    icon: mdi:transmission-tower
  - platform: template
    name: "AC Frequency"
    id: microinv_ac_frequency
    state_class: "measurement"
    device_class: frequency
    unit_of_measurement: Hz
    icon: mdi:current-ac
  - platform: template
    name: "DC Power"
    id: microinv_dc_power
    state_class: "measurement"
    device_class: power
    unit_of_measurement: W
  - platform: template
    name: "DC Voltage"
    id: microinv_dc_voltage
    state_class: "measurement"
    device_class: voltage
    unit_of_measurement: V
    icon: mdi:flash
  - platform: template
    name: "DC Current"
    id: microinv_dc_current
    state_class: "measurement"
    device_class: current
    unit_of_measurement: A
    icon: mdi:flash
  - platform: template
    name: "Temperature"
    id: microinv_temperature
    state_class: "measurement"
    device_class: temperature
    unit_of_measurement: °C
  - platform: template
    name: "Energy Produced"
    id: microinv_energy
    state_class: total_increasing
    device_class: energy
    unit_of_measurement: Wh
</pre>

Huidige versie van 12 nov 2025 17:51


Project Lidl Balkonkraftwerk Hacking
Naam Lidl Balkonkraftwerk Hacking
Beschrijving Lohnt sich
Website https://www.lidl.nl/p/tronic-balkon-zonnepanelen-starterset-400-w/p100387536
Start 2025-10-25
Contact Polyfloyd
Status Production


I bought a solar power set from the Lidl in Germany for just 200 euros. A decent deal for 370 Wp panels, a microinverter and some mounting brackets.

On problem: the microinverter runs Tuya, which is notoriously connected to Chinese clouds. The inverter can be used without setting up network connectivity and the Tuya app, but I would like to have stats from this device in Home Assistant.

So let's hack it!

Teardown

The OEM manufacturer and model is EWAY-VNV6204. Eway makes more power electronics such as car chargers. There are a couple more models in this series such as the EWAY-VNV6208 where the last number corresponds to the wattage.

What is really neat is that the MCU responsible for network connectivity is an ESP32-C3 which I am familiar with. Moreover, it has a 4-pin header right next to it which is most likely UART and a physical push button labeled "BURN" which may very well be a button to put the ESP in flashing mode.

Getting In

Test clamps hooked up

The pad on the UART header farthest from the ESP is connected to a large copper plane. With a continuity test from a multimeter I was able to conclude that this is a ground plane. The two middle pins have thin traces leading to the ESP which means that these are the RX/TX lines. The last pad is probably VCC, I did not measure it.

The board is powered from the DC/solar side. The Lidl Tuya app reports the DC voltage when the sun is hitting the panels, which usually is around 26 volts in slightly overcast weather conditions. The EWAY specs state that the maximum input voltage for this device is 60 volts. Hooking up some probes to the neatly exposed cable connections to a lab power supply with 20V made the board power up.

UART pads marked

Connecting the UART to a USB-dongle gave ASCII output! Hurray! The baudrate is 115200, which is the default for ESP devices.

Holding the BURN button while power cycling triggers the ESP to enter its ROM flashing mode, with which I was able to make a dump of the whole 4M firmware.

Reverse Engineering the ROM

Shoutout to Shiz from Revspace for helping me to get started with Ghidra! o7

I then plowed through the ROM for a few days. I had never done reverse engineering for binaries, so this was a first fun project to discover that. It's quite fun to do. Every function and variable that I identify gives a little dopamine hit. It's a flow-state zen which is similar to programming. I hit a few dead ends in the firmware until I figured out the best way to approach this:

  • Find the ESP-IDF functions by searching for their log strings and printfs.
  • Find out which of those IDF functions are doing some kind of IO
  • Find out what kind of routines are making those function calls

It turned out that really the only kind of IO this device ever does is communicating over its UART1 peripheral (this is distinct from its debugging interface which is UART0).

The peripheral connected to UART1 is wired as GPIO6=TX, GPIO7=RX.

There is something connected to GPIO4 which according to the firmware dump seems to be a LED. However, there is no LED visible on the top side of the PCB. The only LED at all on this device is a status LED controlled by the MPTT which is multi-color.

Protocol

A basic communication frame consists of a 1 byte header that is 0xFA, followed by the contents and is terminated by a 1 byte inverted XOR-sum checksum and 0xFB.

The communication is rather unreliable, validating the checksum is a must.

Retrieving hardware/software info

>>> FA:01:06:00:F8:FB
                ^^ checksum
       ^^ ^^ cmd
<<< FA:01:06:0B:04:00:20:1E:17:DE:FB
                               ^^ checksum
                            ^^ software version
                         ^^ hardware version
                ^^ rated power * 100 Watt

Reading sensor values

>>> FA:10:01:00:EE:FB
                ^^ checksum
       ^^ ^^ command
<<< FA:10:14:12:09:F4:01:01:0B:52:04:29:01:84:01:D7:00:C2:00:00:00:00:00:F1:FB
                                                                         ^^ checksum
                                                       ^^ ^^ ^^ ^^ energy produced since power-up, in watt-hours
                                                 ^^ ^^ temperature * 10
                                           ^^ ^^ dc current * 100, 
                                     ^^ ^^ dc voltage * 10
                               ^^ ^^ dc power * 10
                            ^^ operational status (0 = off, 8 = starting, 11 = active)
                   ^^ ^^ ac frequency * 10
             ^^ ^^ ac voltage * 10

Esphome

Stats shown in Home Assistant

The most up-to-date config that I use can be found here

esphome:
  name: lidl-balkonkraftwerk
  friendly_name: Lidl Balkonkraftwerk
  platformio_options:
    board_build.flash_mode: dio

esp32:
  variant: esp32c3
  board: esp32-c3-devkitc-02
  framework:
    type: esp-idf

logger:
  hardware_uart: UART0

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password
  ap:

web_server:

captive_portal:

ota:
  platform: esphome
  password: !secret ota_password

mqtt:
  broker: mqtt.local
  discovery: false

api:

uart:
  - id: uart_microinv
    rx_pin: 7
    tx_pin: 6
    baud_rate: 115200
    parity: none
    data_bits: 8
    stop_bits: 1
    debug:
      direction: BOTH

text_sensor:
  - platform: template
    name: "Firmware Version"
    id: microinv_sfv
    icon: mdi:alpha-v

  - platform: template
    name: "Hardware Version"
    id: microinv_hdv
    icon: mdi:alpha-v

  - platform: template
    name: "Status"
    id: microinv_status
    icon: mdi:cog

sensor:
  - platform: template
    id: microinv_cmd_0x0106
    update_interval: 60s
    lambda: |-
      const char *TAG = "microinv_cmd_0x0106";

      auto uart = id(uart_microinv);

      uint8_t discard;
      while (uart->available()) uart->read_byte(&discard);

      const uint8_t buf[] = {0xfa, 0x01, 0x06, 0x00, 0xf8, 0xfb};
      uart->write_array(buf, sizeof(buf));
      uart->flush();

      uint8_t recv[11] = {0};
      size_t nread = uart->read_array(recv, sizeof(recv));
      if (memcmp(recv, "\xfa\x01\x06", 3)) {
        ESP_LOGW(TAG, "response header invalid");
        return {};
      }
      uint8_t chk = 0;
      for (int i = 1; i < sizeof(recv)-2; i++) {
        chk = chk ^ recv[i];
      }
      chk = ~chk;
      if (chk != recv[sizeof(recv)-2]) {
        ESP_LOGW(TAG, "invalid checksum");
        return {};
      }

      id(microinv_sfv_rating).publish_state(recv[4] * 100);

      char ss[0xff] = {0};

      int sfv = recv[8];
      snprintf(ss, sizeof(ss), "%d.%d.%d", sfv / 100 + 1, (sfv / 10) % 10, sfv % 10);
      id(microinv_sfv).publish_state(std::string(ss));

      int hdv = recv[7];
      snprintf(ss, sizeof(ss), "%d.%d.%d", hdv / 100 + 1, (hdv / 10) % 10, hdv % 10);
      id(microinv_hdv).publish_state(std::string(ss));

      return {};

  - platform: template
    id: microinv_cmd_0x1001
    update_interval: 5s
    lambda: |-
      const char *TAG = "microinv_cmd_0x1001";

      auto uart = id(uart_microinv);

      uint8_t discard;
      while (uart->available()) uart->read_byte(&discard);

      const uint8_t buf[] = {0xfa, 0x10, 0x01, 0x00, 0xee, 0xfb};
      uart->write_array(buf, sizeof(buf));
      uart->flush();

      uint8_t recv[25] = {0};
      size_t nread = uart->read_array(recv, sizeof(recv));
      if (memcmp(recv, "\xfa\x10", 2)) {
        ESP_LOGW(TAG, "response header invalid");
        return {};
      }
      uint8_t chk = 0;
      for (int i = 1; i < sizeof(recv)-2; i++) {
        chk = chk ^ recv[i];
      }
      chk = ~chk;
      if (chk != recv[sizeof(recv)-2]) {
        ESP_LOGW(TAG, "invalid checksum");
        return {};
      }

      // recv[2] is unused
      float ac_voltage   = (float)(recv[4] << 8 | recv[3]) / 10.0;
      float ac_frequency = (float)(recv[6] << 8 | recv[5]) / 10.0;
      // recv[7] is always 1 and in the original fw some kind of length indicator of following data. The number of DC inputs?
      uint8_t status = recv[8];
      float dc_power    = (float)(recv[10] << 8 | recv[9])  / 10.0;
      float dc_voltage  = (float)(recv[12] << 8 | recv[11]) / 10.0;
      float dc_current  = (float)(recv[14] << 8 | recv[13]) / 100.0;
      float temperature = (float)(recv[16] << 8 | recv[15]) / 10.0;
      int energy = recv[20] << 24 | recv[19] << 16 | recv[18] << 8 | recv[17];
      // recv[21] and recv[22]: online or error status codes?

      id(microinv_ac_voltage).publish_state(ac_voltage);
      id(microinv_ac_frequency).publish_state(ac_frequency);
      id(microinv_dc_power).publish_state(dc_power);
      id(microinv_dc_voltage).publish_state(dc_voltage);
      id(microinv_dc_current).publish_state(dc_current);
      id(microinv_temperature).publish_state(temperature);
      id(microinv_energy).publish_state(energy);

      char status_unk[16] = {0};
      snprintf(status_unk, sizeof(status_unk), "0x%02x", status);
      id(microinv_status).publish_state(
        status == 0x00 ? "Standby" :
        status == 0x08 ? "Testing" :
        status == 0x0b ? "Active"  :
        status_unk);

      return {};

  - platform: uptime
    name: Uptime

  - platform: template
    name: "Rated Capacity"
    id: microinv_sfv_rating
    device_class: power
    unit_of_measurement: W

  - platform: template
    name: "AC Voltage"
    id: microinv_ac_voltage
    state_class: "measurement"
    device_class: voltage
    unit_of_measurement: V
    icon: mdi:transmission-tower

  - platform: template
    name: "AC Frequency"
    id: microinv_ac_frequency
    state_class: "measurement"
    device_class: frequency
    unit_of_measurement: Hz
    icon: mdi:current-ac

  - platform: template
    name: "DC Power"
    id: microinv_dc_power
    state_class: "measurement"
    device_class: power
    unit_of_measurement: W

  - platform: template
    name: "DC Voltage"
    id: microinv_dc_voltage
    state_class: "measurement"
    device_class: voltage
    unit_of_measurement: V
    icon: mdi:flash

  - platform: template
    name: "DC Current"
    id: microinv_dc_current
    state_class: "measurement"
    device_class: current
    unit_of_measurement: A
    icon: mdi:flash

  - platform: template
    name: "Temperature"
    id: microinv_temperature
    state_class: "measurement"
    device_class: temperature
    unit_of_measurement: °C

  - platform: template
    name: "Energy Produced"
    id: microinv_energy
    state_class: total_increasing
    device_class: energy
    unit_of_measurement: Wh